2021年度进展01:混凝土桥及其​高性能材料

[1] 赵人达,占玉林,徐腾飞,李福海,文希,杨世玉,原元,赵成功,张建新.混凝土桥及其高性能材料2019年度研究进展[J].土木与环境工程学报(中英文),2020,42(05):37-5.

[2] 赵人达,占玉林,徐腾飞,李福海,赵成功,张建新,杨世玉,原元,文希.混凝土桥及其高性能材料2020年度研究进展[J].土木与环境工程学报(中英文),2021,43(S1):12-22.

[3] Tang C, Zhang G, Song C, et al. Flexural Behavior of Unbonded Prestressed Concrete Bridge Girders[J]. Advances in Civil Engineering. 2021, 2021.

[4] E O L L, G Z, F Z, et al. Shear Experiments of Prestressed Concrete Bridge Girders[J]. ACI Structural Journal. 2021, 118(3).

[5] Song T, Walter Y C S, Scott D W, et al. Novel Finite Element Analysis of Curved Concrete Box Girders Using Hybrid Box Elements[J]. Journal of Structural Engineering. 2021, 147(1).

[6] 胡志坚,姚鹏飞,周知. 预制拼装混凝土桥梁连接钢筋粘结锚固性能[J]. 哈尔滨工业大学学报. 2021, 53(03): 82-93.

[7] Ibrahim Q A, Chikako F. Response of Reinforced Concrete Dapped-End Beams Exhibiting Bond Deterioration Subjected to Static and Cyclic Loading[J]. Journal of Advanced Concrete Technology. 2021, 19(5).

[8] 卫俊岭,王浩,茅建校,等. 混凝土连续箱梁桥温度场数值模拟及实测验证[J]. 东南大学学报(自然科学版). 2021, 51(03): 378-383.

[9] Todorov B, Billah A H M M. Seismic fragility and damage assessment of reinforced concrete bridge pier under long-duration, near-fault, and far-field ground motions[J]. Structures. 2021, 31.

[10] Hoang P H, Phan H N, Nguyen D T, et al. Kriging Metamodel-Based Seismic Fragility Analysis of Single-Bent Reinforced Concrete Highway Bridges[J]. Buildings. 2021, 11(6).

[11] 方圣恩,唐永久. 隔震与非隔震支座对混凝土箱梁桥地震易损性的影响[J]. 地震工程学报. 2021, 43(06): 1368-1376.

[12] 刘雪山,李建中,张宏杰,等. 不同构造下的预制拼装钢管混凝土桥墩抗震性能试验[J]. 中国公路学报. 2021, 34(11): 116-128.

[13] 鲁锦华,陈兴冲,丁明波,等. 铁路重力式桥墩抗震计算简化模型研究[J]. 振动与冲击. 2021, 40(09): 71-76.

[14] 蔺鹏臻,韩旺和. 基于BIM技术的混凝土桥梁耐久性分析软件开发[J]. 铁道工程学报. 2021, 38(03): 80-85.

[15] Dizaj E A, Padgett J E, Kashani M M. A Markov chain-based model for structural vulnerability assessmentof corrosion-damaged reinforced concrete bridges[J]. Philosophical Transactions of the Royal Society A. 2021, 379(2203).

[16] Fan W, Yang S, Sun W, et al. Effects of Corrosion and Scouring on Barge Impact Fragility of Bridge Structures Considering Nonlinear Soil-Pile Interaction[J]. Journal of Bridge Engineering. 2021, 26(8).

[17] Biswas R K, Iwanami M, Chijiwa N, et al. Numerical evaluation on the effect of steel bar corrosion on the cyclic behaviour of RC bridge piers[J]. Materials Today: Proceedings. 2021, 44(P1).

[18] He Z, Li Y, Xu T, et al. Crack-based serviceability assessment of post-tensioned segmental concrete box-girder bridges[J]. Structures. 2021, 30.

[19] 陈水生,赵辉,朱朝阳,等. 随机车载下的桥梁裂缝宽度极值预测方法[J]. 华中科技大学学报(自然科学版). 2022, 50(01): 82-87.

[20] Haocheng C, Rujin M. Simulation of Ducts and Passages with Negative-Area Spatial Truss Element in 3D Creep Analysis of Reinforced Concrete and Prestressed Concrete Bridge[J]. KSCE Journal of Civil Engineering. 2021(prepublish).

[21] Pengzhen L, Dengguo L, Tao H, et al. Concrete performance time-varying effect of CFST arch bridges[J]. Mechanics of Time-Dependent Materials. 2021(prepublish).

[22] 陈水生,赵辉,李锦华,等. 大气环境下的钢筋混凝土桥梁时变可靠度分析[J]. 计算力学学报. 2021: 1-8.

[23] 张怡雪,毛江鸿,方明山,等. 考虑存梁期影响的节段悬拼混凝土桥徐变变形分析[J]. 桥梁建设. 2021, 51(04): 73-80.

[24] 薛俊青,林健辉,黄福云,等. 极端气候下小箱梁截面平均温度简化计算方法研究[J]. 桥梁建设. 2021, 51(04): 53-59.

[25] Sun B, Yang Y, Li X, et al. Full-scale investigation of post-tensioned prestressed concrete bridge girders subjected to frost heaving in cold regions[J]. Engineering Structures. 2022, 250.

[26] Abdollahnia H, Alizadeh E M H, Reza K K. Multiaxial Fatigue Life Assessment of Integral Concrete Bridge with a Real-Scale and Complicated Geometry Due to the Simultaneous Effects of Temperature Variations and Sea Waves Clash[J]. Journal of Marine Science and Engineering. 2021, 9(12).

[27] Xu J, Wu G, Feng D, et al. Probabilistic multi-hazard fragility analysis of RC bridges under earthquake-tsunami sequential events[J]. Engineering Structures. 2021, 238.

[28] Ren J, Song J, Ellingwood B R. Reliability assessment framework of deteriorating reinforced concrete bridges subjected to earthquake and pier scour[J]. Engineering Structures. 2021, 239.

[29] Zhou S C, Demartino C, Xu J J, et al. Effectiveness of CFRP seismic-retrofit of circular RC bridge piers under vehicular lateral impact loading[J]. Engineering Structures. 2021, 243.

[30] Chen L, Qian J, Tu B, et al. Performance-based risk assessment of reinforced concrete bridge piers subjected to vehicle collision[J]. Engineering Structures. 2021, 229.

[31] 张景峰,孔令云,韩万水,等. 超高车辆撞击下预应力混凝土空心板桥损伤机理及撞后承载力研究[J]. 中国公路学报. 2021, 34(02): 177-187.

[32] Zhu Z, Li Y, Ma C. Damage analysis of small box girder bridges under car explosion[J]. Engineering Failure Analysis. 2021, 120.

[33] Liu L, Zong Z, Ma Z J, et al. Experimental Study on Behavior and Failure Mode of PSRC Bridge Pier under Close-In Blast Loading[J]. Journal of Bridge Engineering. 2021, 26(2).

[34] 王俊峰,黄平明,韩万水,等. 基于改进损伤算法及MCMC车流模拟的混凝土桥梁疲劳寿命预测[J]. 湖南大学学报(自然科学版). 2021, 48(11): 31-43.

[35] Ren J, Song J, Ellingwood B R. Reliability assessment framework of deteriorating reinforced concrete bridges subjected to earthquake and pier scour[J]. Engineering Structures. 2021, 239.

[36] Shuyan Y, Xiaobing S, Hongxue J, et al. Hysteretic Model for Corroded Rectangular Reinforced Concrete Bridge Column Under Seismic Loading[J]. Journal of Shanghai Jiaotong University (Science). 2021, 26(6).

[37] Srikanth I, Arockiasamy M. Remaining Service Life Prediction of Aging Concrete Bridges Based on Multiple Relevant Explanatory Variables[J]. Practice Periodical on Structural Design and Construction. 2021, 26(4).

[38] Wang K, Li L. Resistance Deterioration Assessment of Concrete Beam Bridges based on Strain Monitoring Data[J]. IOP Conference Series: Earth and Environmental Science. 2021, 768(1).

[39] A R S , B R V . Fresh and mechanical property of caryota-urens fiber reinforced flowable concrete[J]. Journal of Materials Research and Technology, 2021;15:3647-3662. https: // doi.org/10.1016j.jmrt.2021.09.126

[40] 杨简,陈宝春,吴香国,苏家战,黄卿维.新拌超高性能纤维增强混凝土流动性能对其抗压强度的影响[J].复合材料学报,2021,38(11):3827-3837.DOI:10.13801/j.cnki.fhclxb.20210115.005.

[41] Wenzhen Wang, Aiqin Shen, Zhenghua Lyu, et al. Fresh and rheological characteristics of fiber reinforced concrete——A review[J]. Construction and Building Materials, 2021, 123734. https:/doi.org/10.1016/i.conbuildmat.2021.123734.

[42] Jinlin Ran, Tingchun Li, Dianhao Chen, et al. Mechanical properties of concrete reinforced with corrugated steel fiber under uniaxial compression and tension [J]. Structures, 2021, 34:1890-1902. https://doi.org/10.1016/j.istruc.2021.08.135.

[43] Rafea F. Hassan, Nabeel H. Al-Salim, Experimental study and theoretical prediction on torsional strength with different steel fiber reinforced concretes and Cross-Section areas[J]. Engineering Structures, 2021, 251:113559. https://doi.org/10.1016/j.istruc.2021.08.135.

[44] Chen L , Sun W , Chen B , et al. Multiscale study of fibre orientation effect on pullout and tensile behavior of steel fibre reinforced concrete[J]. Construction and Building Materials, 2021, 283(2):122506. https: / / doi.org/10.1016/j.istruc.2021.08.135.

[45] Dga B , Zg A , Cw C , et al. Effects of fiber clustering on fatigue behavior of steel fiber reinforced concrete beams[J]. Construction and Building Materials, 2021, 301:124070. https: / / doi.org/10.1016/j.istruc.2021.08.135.

[46] 林笑. 混杂纤维混凝土力学性能对比试验研究[D].长安大学,2021.

[47] Fl A , Ke X , Wdd E , et al. Microstructural characteristics and their impact on mechanical properties of steel-PVA fiber reinforced concrete[J]. Cement and Concrete Composites, 2021, 123: 104191. https://doi.org/10.1016/j.istruc.2021.08.135.

[48] Jf A , Gy A , Ht A , et al. Uniaxial compressive behavior of hook-end steel and macro-polypropylene hybrid fibers reinforced recycled aggregate concrete[J]. Construction and Building Materials, 2021, 304:124559. https: // doi.org/10.1016/j.istruc.2021.08.135.

[49] J Zhang, Li S , Peng H . Experimental investigation of multiscale hybrid fibres on the mechanical properties of high-performance concrete[J]. Construction and Building Materials, 2021, 299(2013):123895. https: / / doi.org/10.1016/j.istruc.2021.08.135.

[50] Jrab C , Ylb C . Study on the durability and failure mechanism of concrete modified with nanoparticles and polypropylene fiber under freeze-thaw cycles and sulfate attack[J]. Cold Regions Science and Technology, 2021 ,188: 103301. https: / / doi.org/10.1016/j.istruc.2021.08.135

[51] Fu Q , Xu W , Bu M X , et al. Orthogonal experimental study on hybrid-fiber high-durability concrete for marine environment[J]. Journal of Materials Research and Technology, 2021, 13(10):1790-1804. http://doi.org/10.1016/i.imrt.2021.05.088.

[52] Xu H , Shao Z , Wang Z , et al. Experimental study on mechanical properties of fiber reinforced concrete: Effect of cellulose fiber, polyvinyl alcohol fiber and polyolefin fiber[J]. Construction and Building Materials, 2020, 261:120610. https://doi.org/10.1016/i.conbuildmat.2021.124867.

[53] Tt A , Fb B , Bb B , et al. Experimental and numerical investigation of the effect of steel fibres on the deflection behaviour of reinforced concrete beams without stirrups[J]. Structures, 2021, 33:1603-1619. https://doi.org/10.1016/j.istruc.2021.05.005.

[54] Zw A , Gang M B , Zm A , et al. Flexural behavior of carbon fiber-reinforced concrete beams under impact loading – ScienceDirect[J]. Cement and Concrete Composites, 2021,118:103910. https://doi.org/10.1016/j.cemconcomp.2020.103910.

[55] C. Pradeep Kumar and M. Shahul Hameed, Experimental study on the behaviour of steel fibre when used as a secondary reinforcement in reinforced concrete beam[J]. Materials Today: Proceedings, 2021. https://doi.org/10.1016/j.matpr.2021.11.033.

[56] Gao D , Li W , Pang Y , et al. Behavior analysis and strength prediction of steel fiber reinforced recycled aggregate concrete column under axial compression[J]. Construction and Building Materials, 2021, 290(2): 123278. https://doi.org/10.1016/i.conbuildmat.2021.123278.

[57] Jianxin Zhang, Zonghu Pei, Xian Rong. Seismic performance of HSS reinforced interior beam-column joints with high-strength steel fiber concrete and enhanced reinforcements[J]. Journal of Building Engineering, 2021, 48: 103958. https://doi.org/10.1016/j.jobe.2021.103958

[58] 赵航帅. 新老混凝土粘结性能试验研究及在桥梁加固工程中的应用[D].大连理工大学,2021.DOI:10.26991/d.cnki.gdllu.2021.001205.

[59] NIKOLOUTSOPOULOS N, SOTIROPOULOU A, KAKALI G, et al. Physical and Mechanical Properties of Fly Ash Based Geopolymer Concrete Compared to Conventional Concrete [J]. Buildings-Basel, 2021, 11(5).

[60] RAMESHWARAN P M, MADHAVI T C. Flexural behaviour of fly ash based geopolymer concrete [J]. Materials Today: Proceedings, 2021, 46: 3423-5.

[61] GHAFOOR M T, KHAN Q S, QAZI A U, et al. Influence of alkaline activators on the mechanical properties of fly ash based geopolymer concrete cured at ambient temperature [J]. Construction and Building Materials, 2021, 273.

[62] TOUFIGH V, JAFARI A. Developing a comprehensive prediction model for compressive strength of fly ash-based geopolymer concrete (FAGC) [J]. Construction and Building Materials, 2021, 277.

[63] AHMED H U, MOHAMMED A S, MOHAMMED A A, et al. Systematic multiscale models to predict the compressive strength of fly ash-based geopolymer concrete at various mixture proportions and curing regimes [J]. PLoS One, 2021, 16(6): e0253006.

[64] ANEJA S, SHARMA A, GUPTA R, et al. Bayesian Regularized Artificial Neural Network Model to Predict Strength Characteristics of Fly-Ash and Bottom-Ash Based Geopolymer Concrete [J]. Materials (Basel), 2021, 14(7).

[65] PASUPATHY K, SINGH CHEEMA D, SANJAYAN J. Durability performance of fly ash-based geopolymer concrete buried in saline environment for 10 years [J]. Construction and Building Materials, 2021, 281.

[66] GOPALA KRISHNA SASTRY K V S, SAHITYA P, RAVITHEJA A. Influence of nano TiO2 on strength and durability properties of geopolymer concrete [J]. Materials Today: Proceedings, 2021, 45: 1017-25.

[67] SAXENA R, GUPTA T, SHARMA R K, et al. Influence of granite waste on mechanical and durability properties of fly ash-based geopolymer concrete [J]. Environment, Development and Sustainability, 2021, 23(12): 17810-34.

[68] NGO T T, TRAN T T, PHAM T M, et al. Performance of geopolymer concrete in monolithic and non-corrosive dry joints using CFRP bolts under cyclic loading [J]. Composite Structures, 2021, 258.

[69] HADI M N S, ALI S, NEAZ SHEIKH M. Experimental Study of GFRP-Reinforced Geopolymer Concrete Columns under Different Loading Conditions [J]. Journal of Composites for Construction, 2021, 25(6).

[70] 王龙, 池寅, 徐礼华, 等. 混杂纤维超高性能混凝土力学性能尺寸效应[J]. 建筑材料学报, 2021: 1-11.

[71] 苏捷, 史才军, 黄泽恩, 等. 粗骨料含量对超高性能混凝土抗压强度尺寸效应的影响[J]. 硅酸盐学报, 2021,49(11): 2416-2422.

[72] 高原, 石红磊, 高全青, 等. 不同养护制度对超高性能混凝土力学性能的影响[J]. 混凝土, 2021(06): 108-111.

[73] YU R, ZHANG J, LIU K, et al. Evaluation and regulation of Ultra-High Performance Concrete (UHPC) crack resistance based on physicochemical multi-factor coupling approach[J]. Construction and Building Materials, 2021,301: 124100.

[74] HUANG H, GAO X, KHAYAT K H. Contribution of fiber orientation to enhancing dynamic properties of UHPC under impact loading[J]. Cement and Concrete Composites, 2021,121: 104108.

[75] XIE Y, ZHOU Q, LONG G, et al. Experimental investigation on mechanical property and microstructure of ultra‐high‐performance concrete with ceramsite sand[J]. Structural concrete : journal of the FIB, 2021.

[76] LIU K, WU C, LI X, et al. The influences of cooling regimes on fire resistance of ultra-high performance concrete under static-dynamic coupled loads[J]. Journal of Building Engineering, 2021,44: 103336.

[77] MO Z, GAO X, SU A. Mechanical performances and microstructures of metakaolin contained UHPC matrix under steam curing conditions[J]. Construction and Building Materials, 2021,268: 121112.

[78] ZHOU Y, GUO D, XING F, et al. Multiscale mechanical characteristics of ultra-high performance concrete incorporating different particle size ranges of recycled fine aggregate[J]. Construction and Building Materials, 2021,307: 125131.

[79] FAN D, YU R, SHUI Z, et al. A new development of eco-friendly Ultra-High performance concrete (UHPC): Towards efficient steel slag application and multi-objective optimization[J]. Construction and Building Materials, 2021,306: 124913.

[80] SHI Y, LONG G, ZENG X, et al. Green ultra-high performance concrete with very low cement content[J]. Construction and Building Materials, 2021,303: 124482.

[81] AHMED T, ELCHALAKANI M, KARRECH A, et al. Development of ECO-UHPC with very-low-C3A cement and ground granulated blast-furnace slag[J]. Construction and Building Materials, 2021,284: 122787.

[82] YANG J, ZENG J, HE X, et al. Eco-friendly UHPC prepared from high volume wet-grinded ultrafine GGBS slurry[J]. Construction and Building Materials, 2021,308: 125057.

[83] WANG J N, YU R, XU W Y, et al. A novel design of low carbon footprint Ultra-High Performance Concrete (UHPC) based on full scale recycling of gold tailings[J]. Construction and Building Materials, 2021,304: 124664.

[84] HE Z, ZHU H, ZHANG M, et al. Autogenous shrinkage and nano-mechanical properties of UHPC containing waste brick powder derived from construction and demolition waste[J]. Construction and Building Materials, 2021,306: 124869.

[85] XU S, YUAN P, LIU J, et al. Development and preliminary mix design of ultra-high-performance concrete based on geopolymer[J]. Construction and Building Materials, 2021,308: 125110.

[86] LI Y, ZENG X, ZHOU J, et al. Development of an eco-friendly ultra-high performance concrete based on waste basalt powder for Sichuan-Tibet Railway[J]. Journal of Cleaner Production, 2021,312: 127775.

[87] 杨震樱, 周长顺. 含玻璃粉超高性能混凝土力学性能及微观结构研究[J]. 硅酸盐通报, 2021,40(12): 3956-3963.

[88] 张锐, 胡棚, 李晰, 等. U形UHPC永久模板RC无腹筋组合梁抗剪性能试验[J]. 中国公路学报, 2021,34(08): 145-156.

[89] 雒敏, 蔺鹏臻, 杨子江. 超高性能混凝土增强普通混凝土复合梁受弯承载力[J]. 中国铁道科学, 2021,42(05): 21-29.

[90] 李传习, 周佳乐, 柯璐, 等. 配筋UHPC矩形梁抗扭承载性能试验与计算方法[J]. 中国公路学报, 2021,34(08): 118-131.

[91] JABBAR A M, HAMOOD M J, MOHAMMED D H. The effect of using basalt fibers compared to steel fibers on the shear behavior of ultra-high performance concrete T-beam[J]. Case Studies in Construction Materials, 2021,15: e702.

[92] WEI J, LI J, WU C, et al. Hybrid fibre reinforced ultra-high performance concrete beams under static and impact loads[J]. Engineering Structures, 2021,245: 112921.

[93] FENG W, FENG H, ZHOU Z, et al. Analysis of the Shear Capacity of Ultrahigh Performance Concrete Beams Based on the Modified Compression Field Theory[J]. Advances in Materials Science and Engineering, 2021,2021: 1-15.

[94] PREINSTORFER P, HUBER P, HUBER T, et al. Experimental investigation and analytical modelling of shear strength of thin walled textile-reinforced UHPC beams[J]. Engineering Structures, 2021,231: 111735.

[95] MEZQUIDA-ALCARAZ E J, NAVARRO-GREGORI J, MARTÍ-VARGAS J R, et al. Effects of tension stiffening and shrinkage on the flexural behavior of reinforced UHPFRC beams[J]. Case Studies in Construction Materials, 2021,15: e746.

[96] 王皓磊, 孙韬, 刘晓阳, 等. 钢-UHPC连续组合梁抗弯性能试验[J]. 中国公路学报, 2021,34(8): 218-233.

[97] 朱劲松, 王修策, 丁婧楠. 钢-UHPC华夫板组合梁负弯矩区抗弯性能试验[J]. 中国公路学报, 2021,34(08): 234-245.

[98] 王洋, 邵旭东, 沈秀将, 等. 钢板条-UHPC组合桥面结构静力及疲劳试验[J]. 中国公路学报, 2021,34(08): 261-272.

[99] XIAO J, ZHOU M, NIE J, et al. Flexural behavior of steel-UHPC composite slabs with perfobond rib shear connectors[J]. Engineering Structures, 2021,245: 112912.

[100] CHENG Z, ZHANG Q, BAO Y, et al. Flexural behavior of corrugated steel-UHPC composite bridge decks[J]. Engineering Structures, 2021,246: 113066.

[101] LIU Y, ZHANG X, LIU R, et al. Design and Mechanical Properties of Steel-UHPC Lightweight Composite Decks[J]. Advances in Civil Engineering, 2021,2021: 1-13.

[102] 王景全, 胡玉庆, 刘桐旭, 等. 超高性能混凝土大键齿干接缝受剪性能与承载力计算方法[J]. 建筑结构学报, 2021,42(10): 177-185.

[103] 冯峥, 李传习, 李海春, 等. 超高性能混凝土湿接缝界面粘结性能[J]. 硅酸盐学报, 2021,49(11): 2393-2404.

[104] 霍文斌, 张阳, 黄龙田, 等. 配筋UHPC湿接缝界面抗弯性能及影响因素[J]. 建筑材料学报, 2021,24(03): 525-532.

[105] SUN Q, LIU C, SHA L, et al. Experimental study on bending performance of different types of UHPC in bridge stitching joint[J]. Materials and Structures, 2021,54(5): 179.

[106] ABOKIFA M, MOUSTAFA M A. Full-scale testing of non-proprietary ultra-high performance concrete for deck bulb tee longitudinal field joints[J]. Engineering Structures, 2021,243: 112696.

[107] ABOKIFA M, MOUSTAFA M A. Experimental Behavior of Precast Bridge Deck Systems with Non-Proprietary UHPC Transverse Field Joints[J]. Materials, 2021,14(22): 6964.

[108] 张黎飞,赵行立,黄婷,罗远彬,李皓天,郑愚,邸博,夏立鹏.FRP筋-混凝土黏结滑移性能声发射技术试验研究[J].混凝土,2021,(10):124-128.

[109] 周培龙,李扬,黄中华.FRP筋混凝土在低温下的粘结性能[J].湖北工业大学学报,2021,36(05):100-103.

[110] 刘艳,黄洋洋,邓芃,黄一杰,代其磊.BFRP筋与纤维陶粒混凝土黏结性能试验[J].中国科技论文,2021,16(04):408-414.

[111] 王勃,常福财.GFRP筋海砂混凝土梁受弯性能试验研究[J].低温建筑技术,2021,43(05):76-79.

[112] 王琨,商华杰,徐冠普,时金雨,袁炳琨.钢筋和GFRP筋混合配筋RPC梁受弯性能非线性分析[J].混凝土,2021,(09):25-32.

[113] 杨洋,潘登,吴刚,曹大富,陆伟刚.混杂配筋(钢和FRP筋)梁正截面受弯设计方法研究[J].工程力学,2021,38(09):192-202.

[114] 王勃,牛森.FRP筋-钢筋混合配筋梁受弯性能试验研究[J].吉林建筑大学学报,2021,38(03):15-20.

[115] 吕家美,潘建荣,邸博,郑愚,朱文杰,李锦,张子健,周玲珠.全GFRP筋海水海砂自密实混凝土梁抗剪性能试验研究[J].混凝土,2021,(11):53-57.

[116] 袁方,赵修远.FRP筋-钢筋增强ECC-混凝土组合柱抗震性能研究[J].工程力学,2021,38(08):55-65+144.

[117] 陈爽,梁淑嘉,关纪文.FRP筋/珊瑚混凝土柱轴心受压承载力[J].复合材料学报,2021,38(10):3519-3530.

原文链接:https://www.360doc.cn/article/52061608_1024366240.html

© 版权声明
THE END
喜欢就支持一下吧
点赞8 分享