2023大橙子vfed5.0去授权主题模版源码

TensorFlow实现CycleGAN的步骤大致如下: 1.准备数据集:收集苹果橙子的图片,将它们分别放在两个文件夹中。 2.构建模型:使用TensorFlow中的Keras API,构建一个CycleGAN模型。CycleGAN由两个生成器和两个判别器组成。其中,一个生成器将苹果图片转换为橙子图片,另一个生成器将橙子图片转换为苹果图片;两个判别器用于判别生成的图片是否真实。 3.定义损失函数:CycleGAN使用对抗损失函数和循环一致性损失函数。对抗损失函数用于训练判别器,循环一致性损失函数用于训练生成器。 4.训练模型:使用定义的损失函数,训练CycleGAN模型。在训练过程中,生成器和判别器交替训练。 5.测试模型:使用训练好的CycleGAN模型,将测试集中的苹果图片转换为橙子图片,或将测试集中的橙子图片转换为苹果图片。 下面是一个示例代码,实现了苹果橙子的转换: “` import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers # 构建生成器 def make_generator_model(): model = keras.Sequential() model.add(layers.Dense(7*7*256, use_bias=False, input_shape=(100,))) model.add(layers.BatchNormalization()) model.add(layers.LeakyReLU()) model.add(layers.Reshape((7, 7, 256))) assert model.output_shape == (None, 7, 7, 256) model.add(layers.Conv2DTranspose(128, (5, 5), strides=(1, 1), padding='same', use_bias=False)) assert model.output_shape == (None, 7, 7, 128) model.add(layers.BatchNormalization()) model.add(layers.LeakyReLU()) model.add(layers.Conv2DTranspose(64, (5, 5), strides=(2, 2), padding='same', use_bias=False)) assert model.output_shape == (None, 14, 14, 64) model.add(layers.BatchNormalization()) model.add(layers.LeakyReLU()) model.add(layers.Conv2DTranspose(1, (5, 5), strides=(2, 2), padding='same', use_bias=False, activation='tanh')) assert model.output_shape == (None, 28, 28, 1) return model # 构建判别器 def make_discriminator_model(): model = keras.Sequential() model.add(layers.Conv2D(64, (5, 5), strides=(2, 2), padding='same', input_shape=[28, 28, 1])) model.add(layers.LeakyReLU()) model.add(layers.Dropout(0.3)) model.add(layers.Conv2D(128, (5, 5), strides=(2, 2), padding='same')) model.add(layers.LeakyReLU()) model.add(layers.Dropout(0.3)) model.add(layers.Flatten()) model.add(layers.Dense(1)) return model # 定义损失函数 cross_entropy = keras.losses.BinaryCrossentropy(from_logits=True) def discriminator_loss(real_output, fake_output): real_loss = cross_entropy(tf.ones_like(real_output), real_output) fake_loss = cross_entropy(tf.zeros_like(fake_output), fake_output) total_loss = real_loss + fake_loss return total_loss def generator_loss(fake_output): return cross_entropy(tf.ones_like(fake_output), fake_output) # 定义优化器 generator_optimizer = keras.optimizers.Adam(1e-4) discriminator_optimizer = keras.optimizers.Adam(1e-4) # 实例化生成器和判别器 generator = make_generator_model() discriminator = make_discriminator_model() # 训练模型 @tf.function def train_step(images): noise = tf.random.normal([BATCH_SIZE, 100]) with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape: generated_images = generator(noise, training=True) real_output = discriminator(images, training=True) fake_output = discriminator(generated_images, training=True) gen_loss = generator_loss(fake_output) disc_loss = discriminator_loss(real_output, fake_output) gradients_of_generator = gen_tape.gradient(gen_loss, generator.trainable_variables) gradients_of_discriminator = disc_tape.gradient(disc_loss, discriminator.trainable_variables) generator_optimizer.apply_gradients(zip(gradients_of_generator, generator.trainable_variables)) discriminator_optimizer.apply_gradients(zip(gradients_of_discriminator, discriminator.trainable_variables)) # 测试模型 def generate_and_save_images(model, epoch, test_input): predictions = model(test_input, training=False) fig = plt.figure(figsize=(4, 4)) for i in range(predictions.shape[0]): plt.subplot(4, 4, i+1) plt.imshow(predictions[i, :, :, 0] * 127.5 + 127.5, cmap='gray') plt.axis('off') plt.savefig('image_at_epoch_{:04d}.png'.format(epoch)) plt.show() # 加载数据集 train_images = load_apple_orange_dataset() # 训练模型 for epoch in range(EPOCHS): for batch in train_dataset: train_step(batch) if epoch % 15 == 0: generate_and_save_images(generator, epoch + 1, seed)

原文链接:https://blog.csdn.net/fegdsd/article/details/132918645?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522171852222816800186545133%2522%252C%2522scm%2522%253A%252220140713.130102334.pc%255Fblog.%2522%257D&request_id=171852222816800186545133&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2~blog~first_rank_ecpm_v1~times_rank-10-132918645-null-null.nonecase&utm_term=cms%E4%B8%BB%E9%A2%98

© 版权声明
THE END
喜欢就支持一下吧
点赞12 分享